
COZYDUKE
This whitepaper provides an overview of CozyDuke,
a set of tools used by one or more malicious actors
for performing targeted attacks against high profile
organizations, such as governmental organizations
and other entities that work closely with these
institutions.

The CozyDuke toolset, which we believe has been
under active development since at least 2011,
consists of tools for infecting targeted hosts,
establishing and maintaining backdoor access to the
hosts, gathering information from them and gaining
further access to other hosts inside the victim
organization.

Based on command and control (C&C) server
information found being used by CozyDuke tools,
we believe the CozyDuke toolset is used by at least
one malicious actor who also uses, or at the least
shares, infrastructure with actors using the known
threats, MiniDuke and OnionDuke.

TLP: WHITE

F-SECURE LABS
SECURITY RESPONSE
Malware analysis
Whitepaper

CONTENTS

Introduction 2
The CozyDuke toolset 2
Attack overview 2

Infection vector 2
Target details 2
Timeline 2
Attribution & links 2

Technical Details 3
Initial infection 3
CozyDuke main dropper 3
CozyDuke main component 4

Overview 4
Persistence 4
Configuration data 4
Command and control communication 5
Tasks 5
Modules 6
Executables 6

CozyDuke Evolution 6
CozyDuke Terminology and Naming 7

Appendix A | Sample hashes 8

Appendix B: IOCs 9

2

COZYDUKE Malware analysis

INTRODUCTION

THE COZYDUKE TOOLSET
CozyDuke, as referred to in this document, is a set of tools
used by one or more malicious actors for performing
targeted attacks against high profile organizations. The
core of the CozyDuke toolset is a modular attack platform
consisting of a main component augmented by a set of
additional modules implementing further functionality.
The CozyDuke toolset also includes multiple kinds
of droppers for infecting hosts with CozyDuke or for
executing additional tools from the CozyDuke toolset.
Finally, the CozyDuke toolset includes tools and scripts –
some custom-written, others based on openly available
tools – that are used for purposes such as gathering
further information from infected hosts or for infecting
additional hosts in the same target organization.

ATTACK OVERVIEW

Infection vector

We have observed CozyDuke being spread via email,
which usually contain a link to a compromised website
hosting a ZIP file (although in at least one case, the file was
hosted on Dropbox). These files contain an executable
that, upon execution, will write to disk and execute
CozyDuke, while at the same time presenting the user
with a decoy to divert attention. The decoy is usually an
uninteresting PDF, but we have also observed a Flash
video of monkeys being presented as the decoy.

Target details

We have reason to believe CozyDuke is being used to
target governmental organizations and entities that work
closely with such bodies.

Timeline

We believe the current CozyDuke activity started at
the end of January 2015. Most of the samples we have
observed were compiled beginning from the end of
January. However, based on comparisons of recent
CozyDuke samples against older samples we have
obtained dating back as far as the end of 2011, we believe
CozyDuke has been under active development since at
least 2011.

Attribution & links

We have strong evidence suggesting the group using
CozyDuke is the same as - or at the least shares command
and control infrastructure with - the group or groups
using MiniDuke and OnionDuke. Firstly, a CozyDuke
sample from February of 2012 attempts to contact
a C&C server at nostressjob.com. This domain has
previously been associated with known MiniDuke C&C
infrastructure. This same infrastructure has also been seen
in use by OnionDuke. Secondly, we also have reason to
believe CozyDuke has, in some instances, downloaded
and executed droppers for DLL files reminiscent of
OnionDuke. Specifically, the DLLs dropped have used file
and export names also used by OnionDuke. Additionally,
the strings in the DLLs have been encrypted using the
same algorithm used by OnionDuke. This link is, however,
not as conclusive as the infrastructure overlap.

FIGURE 1: C&C INFRASTRUCTURE CONNECTIONS
BETWEEN COZYDUKE, MINIDUKE AND ONIONDUKE

OnionDukeMiniDukeCozyDuke

overpict.comgrouptumbler.comnostressjob.com

John Kasaipostmaster@grouptumbler.com

COZYDUKE Malware analysis

3

ZIP file

TECHNICAL DETAILS

INITIAL INFECTION
Infection with CozyDuke begins with the victim receiving
an email containing a link to a ZIP file. This ZIP file will
contain a single executable, usually a self-extracting RAR
archive. Upon execution, it will write two files to disk.
The first file is a decoy. The decoy has usually been a PDF
document but Flash videos have also been observed in
some cases. The second file extracted from the archive is
a CozyDuke dropper. This dropper will then proceed to
write to disk the main CozyDuke components as well as an
encrypted configuration file used by CozyDuke.

FIGURE 2: THE COZYDUKE INFECTION FLOW

Extracts

ExtractsExtracts

Downloads

Malicious link

Self-extracting
RAR

ZIP file

CozyDuke main dropper Decoy document

CozyDuke
components

Encrypted
configuration

file

COZYDUKE MAIN DROPPER
The main CozyDuke dropper, used for infecting hosts
with CozyDuke, begins by checking whether the victim
has an anti-virus product installed. Should an installed
product be found, it will be compared to a predetermined
list of product names. If the installed product matches
a name on the list, the dropper will immediately exit.
Newer versions of the dropper will perform additional
checks to ensure the dropper is not being executed inside
a virtual machine or a known malware analysis sandbox
environment. Should either of these checks fail, the
dropper will likewise exit immediately.

Next, the dropper will find and decrypt encrypted data
stored as two PE resources embedded in the executable.
These resources are named with the hexadecimal
identifiers 0x000A and 0x000B. Both resources are
structured similarily. They begin with a four-byte value
specifying the length of the included decryption key.
This decryption key immediately follows the length field.
Finally, the rest of the resource is the encrypted payload.
The encryption used is a simple XOR with a rotating key.

The first resource, 0x000A, contains as its payload a
Microsoft cabinet archive. This archive contains the
CozyDuke components that the dropper will later install
on the victim system. The second resource, 0x000B,
contains as its payload an XML file with instructions for the
dropper on where to install the dropped components and
what to name them.

The dropper will then proceed to write the CozyDuke
components to the specified location. The dropper
will additionally copy the system file rundll32.exe to the
install location for CozyDuke. This file will also use a name
specified in the droppers configuration file. Finally, the
dropper will use the copy of rundll32.exe to load and
execute the CozyDuke main component.

4

COZYDUKE Malware analysis

COZYDUKE MAIN COMPONENT

Overview

The main component of CozyDuke is a DLL file
responsible for orchestrating all of CozyDuke’s activity on
a victim machine. The main component is executed by
the CozyDuke dropper using a copy of rundll32.exe. The
entrypoint function varies, but is always specified in the
dropper configuration.

The most important functionalities offered by the main
component are establishment of persistence, gathering
of basic system information, communication with the C&C
server and the execution of additional tasks, modules or
executables as commanded by the C&C server.

Persistence

CozyDuke may use multiple techniques for establishing
persistence; the following is one technique used. Firstly,
CozyDuke may set itself to be executed at system startup
by adding a registry value under any of the following
registry keys:

• HKLM\Software\Microsoft\Windows\
CurrentVersion\Run\

• HKCU\Software\Microsoft\Windows\
CurrentVersion\Run\

• HKLM\Software\Microsoft\Windows\
CurrentVersion\Policies\Explorer\Run

• HKCU\Software\Microsoft\Windows\
CurrentVersion\Policies\Explorer\Run

The name of the registry value will usually be the
filename, (without the extension) of the CozyDuke main
component.

CozyDuke may also register itself as a Windows service
or scheduled task. Additionally, CozyDuke may
utilize a technique known as COM-object hijacking
[1] to establish persistence. To achieve this, CozyDuke
will “hijack” the registry entries for the COM object
“SharedTaskScheduler”. CozyDuke will modify the
registry entries in such a way that any loading of the
SharedTaskScheduler COM object will first load a special
CozyDuke module that will ensure CozyDuke stays active
on the victim host.

Configuration data

The configuration data for CozyDuke is stored as a
separate RC4-encrypted file that is written to disk by the
CozyDuke dropper during initial infection. The name of
the encrypted configuration file on disk has been racss.
dat in all of the observed cases. The decrypted file is
formatted as XML with the UTF-16LE character encoding.

FIGURE 3: SCREENSHOT OF A DECRYPTED COZYDUKE CONFIGURATION FILE

COZYDUKE Malware analysis

5

In all CozyDuke samples from 2015, the configuration
data has been encrypted with the RC4 key B5 78 62 52 98
3E 24 D7 3B C6 EE 7C B9 ED 91 62. In CozyDuke samples
from July of 2014, the RC4 key has been embedded in the
encrypted configuration file. In this case, the encrypted
configuration file will begin with a 4-byte value specifying
the length of the included RC4 key. This will be followed
by the actual key. Finally, the rest of the file will be the
actual configuration data.

Command and control communication

CozyDuke’s main method of communicating with its
command and control server is using either HTTP or
HTTPS. The method of communication, as well as the
address to connect to, are specified in CozyDuke’s
configuration data. In the cases we have observed, the
configuration data for any single CozyDuke instance has
included the details of either one or two C&C servers.
Listed above are details of known CozyDuke C&C servers.
We believe all of the ones listed are compromised servers.

In addition to its main communication method,
CozyDuke also features the ability to use Twitter as a
backup C&C channel. In cases where CozyDuke utilizes
this functionality, the twitter account to be used will be
specified in CozyDuke’s configuration data. We have only
observed two samples where a backup Twitter account
was actually specified in the configuration data. These
accounts were @US2515 and @monkey_drive.

Tasks

CozyDuke’s primary purpose is the execution of tasks.
These tasks usually involve the execution of modules or
executables providing additional functionality. The main
difference between the two is that modules are DLL files
loaded in memory by the CozyDuke main component,
whereas executables are PE executable files that
CozyDuke will write to disk and execute.

For the purpose of managing tasks, the main component
of CozyDuke implements 6 commands that the C&C
server can specify. These commands are briefly described
in Table 2 (overleaf).

Dropper SHA1 Protocol Domain/IP Path Port

75aeaee253b5c8ae701195e3b0f49308f3d1d932 HTTP www.sanjosemaristas. com /app/index.php 80

75aeaee253b5c8ae701195e3b0f49308f3d1d932 HTTP www.cifss. org /product_thumb/index.php 80

446daabb7ac2b9f11dc1267fbd192628cc2bac19 HTTP pvt.relance.fr /catalogue/json/index.php 80

87668d14910c1e1bb8bbea0c6363f76e664dcd09 HTTPS 200.119.128.45 /mobile.php 443

87668d14910c1e1bb8bbea0c6363f76e664dcd09 HTTPS 202.206.232.20 /rss.php 443

ea0cfe60a7b7168c42c0e86e15feb5b0c9674029 HTTPS www.getiton.hants. org.uk /themes/front/img/ajax.php 80

f2ffc4e1d5faec0b7c03a233524bb78e44f0e50b HTTPS www.seccionpolitica. com.ar /galeria/index.php 80

9b56155b82f14000f0ec027f29ff20e6ae5205c2 HTTPS 200.125.133.28 /search.php 443

9b56155b82f14000f0ec027f29ff20e6ae5205c2 HTTPS 200.125.142.11 /news.php 443

bf265227f9a8e22ea1c0035ac4d2449ceed43e2b HTTPS 203.156.161.49 /plugins/twitter.php 443

32b0c8c46f8baaba0159967c5602f58dd73ebde9 HTTPS 209.40.72.2 /plugins/fsearch.php 443

78e9960cc5819583fb98fb619b33bff7768ee861 HTTPS 210.59.2.20 /search.php 443

78e9960cc5819583fb98fb619b33bff7768ee861 HTTPS 121.193.130.170 /wp-ajax.php 443

ce9d077349638ffd3e1ad68cda76c12cfb024069 HTTPS 208.75.241.246 /msearch.php 443

ac2b5928f46069111f4334f650a7dbf1b5f026d5 HTTPS 183.78.169.5 /search.php 443

ac2b5928f46069111f4334f650a7dbf1b5f026d5 HTTPS 201.76.51.10 /plugins/json.php 443

bf9d3a45273608caf90084c1157de2074322a230 HTTPS 208.77.177.24 /fsearch.php 443

TABLE 1: DETAILS OF KNOWN COZYDUKE C&C SERVERS

 REFERENCE

I. GData; Paul Rascagneres; COM Object hijacking: the discreet way of persistence: An Analysis of a new persistence mechanism in the wild;
published 30.10.2014; https://blog.gdatasoftware.com/blog/article/com-object-hijacking-the-discreet-way-of-persistence.html

Note: Domain names intentionally broken

https://blog.gdatasoftware.com/blog/article/com-object-hijacking-the-discreet-way-of-persistence.html

6

COZYDUKE Malware analysis

Command Purpose

Add Add task

Delete Delete task

Stop Stop task

Modify Modify task or configuration

Upload Upload data

Download Download data

The following chapter, CozyDuke Tasks, provides further
information on the tasks CozyDuke has been observed
executing.

COZYDUKE TASKS

Based on samples obtained from our own collections
and generously shared to us by a trusted source, we
have been able to identify some of the tasks executed
recently by CozyDuke. These tasks can be divided into
two categories. The first consists of CozyDuke modules
which are DLL files loaded in memory by the main
component of CozyDuke for the purposes of extending
CozyDuke’s functionality. The second category consists
of PE executable files that CozyDuke will write to disk
and execute on the infected host. These executables are
usually droppers similar to those used to infect a host
with CozyDuke. In this case, however, instead of dropping
CozyDuke, the executables may drop other executables,
scripts or DLLs. Once executed by CozyDuke, these
executables function independently of CozyDuke’s main
component.

Modules

Listed below are the modules we have observed being
used:

Module Type Purpose

Command
execution
module

Can be used to execute arbitrary
commands by invoking C:\
Windows\System32\cmd.exe

Password stealer
module

Will attempt to harvest stored
credentials from the victim

NTLM stealer
module

Will attempt to harvest credentials
stored on the victim host that are
used as part of Windows NTLM user
authentication

System info
module

Will attempt to gather
comprehensive information on the
victim host’s configuration

Screenshot
module

Will take a screenshot of the victim
host

Executables

We have observed executables executed by CozyDuke for
the following purposes:

• Dropping and executing scripts for collecting
information and credentials from the victim
organization’s Active Directory environment

• Dropping and executing scripts for further
penetrating the victim organization with the help
of commonly available tools such as Mimikatz and
PSExec

• Dropping and executing additional malware with
the same file and export naming conventions
as OnionDuke and the same string encryption
algorithm as OnionDuke

These executables will implement their own methods of
C&C communication and data exfiltration. In many cases,
the scripts utilized Microsoft OneDrive accounts for data
transfer.

COZYDUKE EVOLUTION
The earliest CozyDuke sample we have observed so far
was compiled on the 29th of December, 2011. The sample
in question was not an actual CozyDuke main component,
but a CozyDuke module. The earliest main component
we observed was compiled on the 29th of February, 2012.
The main component in question stores its strings and
configuration in an unencrypted form. Additionally, the
configuration is stored embedded in the binary, not as
a separate XML file in the manner of newer CozyDuke
versions. Even this oldest main component does however
use XML for other purposes via the open-source Pugi-XML
library.

The next CozyDuke main component we observed
was compiled on the 30th of November, 2012. By then,
the authors had switched to encrypting the strings
and the configuration. However, the configuration
was still stored embedded in the binary. Design-wise,
this sample is a bit of an outlier. Instead of being a DLL
file, the main component is actually an EXE that, in
addition to the configuration, embeds multiple DLLs that
provide additional functionality to the main component.
Apart from the different design, functionally the main
component is very similar to other CozyDuke main
components. It is possible the authors of CozyDuke were
trying out a new design, but eventually decided to go
back to the original.

The next CozyDuke main component we observed,
compiled on the 2nd of July, 2014, is again a DLL file.
By now, the authors of CozyDuke had switched from

TABLE 2: 6 COZYDUKE
C&C SERVER COMMANDS

TABLE 3: COZYDUKE MODULES

COZYDUKE Malware analysis

7

an embedded configuration to the external XML-
formatted configuration file seen today. We have yet to
observe samples from 2013, but we believe CozyDuke to
have been under active development as well during that
year. Between 2012 and 2014, the authors of CozyDuke
appear to have performed significant refactoring of
the CozyDuke codebase, even though functionally the
differences are smaller. Examples of this refactoring
include for instance the switch from using the Pugi-XML
library to using Microsoft’s MSXML 3.0 for XML-related
functionality.

The latest CozyDuke main component we observed
was compiled on the 26th of February, 2015. The core
functionality of the latest sample is very similar to the
previous sample from July of 2014, but the authors
of CozyDuke have implemented a lot of additional
functionality, as the increase in size from 279KB to 820KB
would also suggest.

COZYDUKE TERMINOLOGY AND NAMING
Based on logging strings, variable naming and PDB strings
found in CozyDuke samples, we observed the following:

• The internal name for CozyDuke is “Agent”

• The CozyDuke main component’s functionality
revolves around the execution of “tasks” that are
often associated with “modules”

• It is possible that the name “Agent” is not the
original internal name of CozyDuke and that the
name was changed sometime in 2011 with the
original project name being “Agent_NextGen”

• Sometime in 2011, CozyDuke was identified
internally as being version 3

PDB strings found in early CozyDuke samples are listed in
Table 4 (below).

Compilation timestamp PDB string

Mon Feb 13 13:07:04 2012
(UTC)

E:\Visual Studio 2010\Projects\Agent_NextGen\Agent2011v3\Agent2011\Agent\tasks\bin\
GetPasswords\exe\GetPasswords.pdb

Wed Dec 28 13:23:04 2011
(UTC)

D:\Projects\Agent2011\Agent2011\Agent\tasks\bin\systeminfo\exe\systeminfo.pdb

Thu Jan 26 13:57:00 2012
(UTC)

\\192.168.56.101\true\soft\Agent\tasks\Screenshots\agent_screeshots\Release\agent_
screeshots.pdb

TABLE 4: COZYDUKE PDB STRINGS

2012 2013 2014 2015

29/12/11
Oldest known CozyDuke module

Unencrypted strings

29/2/12
Oldest known CozyDuke main module

266KB DLL
Unencrypted strings

Unencrypted embedded configuration

30/11/12
Executable CozyDuke main component

426KB EXE
Encrypted strings

Encrypted embedded configuration

2/7/14
CozyDuke main component

279KB DLL
Encrypted strings

Encrypted external configuration

26/2/15
CozyDuke main component

820KB DLL
Encrypted strings

Encrypted external configuration

FIGURE 4: TIMELINE OF COZYDUKE EVOLUTION

8

APPENDIX A

APPENDIX A | SAMPLE HASHES
• 00f67deb6e435c68f8a39336c9effc45d395b134
• 01d3973e1bb46e2b75034736991c567862a11263
• 034481acd945028f4521cf0eaa3685c6202f9e19
• 04aefbf1527536159d72d20dea907cbd080793e3
• 08facf0ae484f5bc7b066bbdd382e683fdfcba77
• 0a38765d599865dabc394287e61f5e8f6ac442c5
• 1051f814b33991a1f8e551759ead44b8ee7fc2c9
• 1a3825ef1064c2bbea5169671ef62030b00875ca
• 1d734a26184005603605aab67eba76d7d5ec3b8c
• 1e02eea130d17b9afb712d846612ab8bd6972183
• 210bc99275368df7ea179055737cffc3a12a6614
• 23e20c523b9970686d913360d438c88e6067c157
• 2564d7d42384bd3dce7257ef4a0a4b0cedac635b
• 259b4679c26625c452141861014fe2f2c336462b
• 26d030c93c517d63147f502bf6536c3914698821
• 29686320a3f06030f7192ca5b4f3eb47e73cb470
• 29a91e7823046f4ec3fd6b3fd1b442eaa92f3565
• 31163d35c5a3caa5e82e1d9b0d1b4db8fbdd79fa
• 32b0c8c46f8baaba0159967c5602f58dd73ebde9
• 33beb7a410f1cd699733000b5b30b5e4eb2062ba
• 3583647ef8158e29e3c18413ece70c2851720926
• 365cbfe32a79ce41b049dd85bb30afc51ba1ea6f
• 37144694cfa953ab7acd376c033beda45cc95f4d
• 3a624b196576b03d327b43247a975da44688ffda
• 3b297f0ca7750c0c74e5f931fec1528fe1ba6bc9
• 3c8ba7ca3675ecc75855a58b9c0527d067c88f86
• 3f0be1751afa9cb0fdd6bc6fc9874dd880bc8c1b
• 41bb403d2549db95cfc6c851ef92ad26bdf2e906
• 42cfe068b0f476198b93393840d400424fd77f0c
• 42fadc443025a132f833a4a5ed8a5350f79a86cc
• 43a979aa6ab08685d9ce949c67e19bebbb3c3559
• 443bc2e77b10ae64af6321c2c7bfd311c0772503
• 44406a80f13045442ce6a28ee62a923ac8f8c56a
• 482d1624f9450ca1c99926ceec2606260e7ce544
• 4975293c49ca223013088e51b8378e935322fe93
• 49fb759d133eeaab3fcc78cec64418e44ed649ab
• 4a16674c799fae6535c82f878f6a37f94ee9a49b
• 5150174a4d5e5bb0bccc568e82dbb86406487510
• 55bd71353408cdda1bdbbd54bc70b4c595d70e56
• 56ac317ed78f8016d59cb41e9283b1c08cbf149f
• 5bcd74e0c3c661580201e7d8122d7525a1480b4c
• 5d3b82cdea4ae066efd5d127c7dd222adee62d0b
• 5d4535df615a30b87b57facf4babf8d506e86a07
• 5ffe420a3cc848024884db8e2cfed68c47368dae
• 6502bffbd1324071c7461c50a2552e48084560ae
• 662d3cb303450abae2b88699c7f48d74f84f0d5a
• 669b7c98f0f697b91e95804dacdfe55fae3f0a85
• 69c82f6ca382bd2205d55b89f2e842b4790bda62
• 6b5ef7b76b35203dd323af49bfa27cfa7e1b6376
• 6b64ed0f4e39a1c320c7cbd342a93faed9f5df86
• 71c59eaa445346251467942bac489a9d4e807f7f
• 75aeaee253b5c8ae701195e3b0f49308f3d1d932
• 75e03a17d49d1b052770a21520bc13b14fc6c607
• 7765a0869530c1a17b8fd339bbe55cc4c1bdba30
• 78e9960cc5819583fb98fb619b33bff7768ee861
• 7c710cf31f20ef7e0ad1809672255d4edfdff052
• 7c79e3205323b9917f9eedcd3d5a891d87ddf256
• 7cda99eefb5150b87278f9bcf6ac0bde534b99e8
• 80935ac2ab3cf5b2900b49f6982a6a3f4575367c
• 81affba765aa87a0d0b12b5a213f09fd51e1e9a1
• 87668d14910c1e1bb8bbea0c6363f76e664dcd09
• 883292f00e5836f99a1943a6e0164d8c6c124478
• 8ad2003b99d92dfb9d85912ee6a39c46b1ec8137

• 8b357ff017df3ed882b278d0dbbdf129235d123d
• 8ba7932a40008881a4ed975f52271c0b679eaff2
• 8bc2d5aa1f384d56f3e921bce5326de8ff4dce2d
• 8c3ed0bbdc77aec299c77f666c21659840f5ce23
• 8cc326473fd30ab5c97709e5a91fb04e18e72e96
• 8f1ac45360196a7b5a1680ff839a131394e9d9b4
• 8f467b32f1ec0f3b2efe10b3fed2a14b16075702
• 9319bf72000f8e468c182947dd5c82fb8b9ae419
• 93d53be2c3e7961bc01e0bfa5065a2390305268c
• 93ee1c714fad9cc1bf2cba19f3de9d1e83c665e2
• 94520b93510db0dc10387a65e0a46f45ab501226
• 975b86c329c537f763f94a3f12610304dd358ff8
• 9b56155b82f14000f0ec027f29ff20e6ae5205c2
• 9dc6bbc34933ffecbfbb454788bab4230fcc2c65
• 9e156f41ff9c17692c9eba5bdb67ac14f0c0473f
• 9f8f1672594a6fbac43793c857dd7718e75f328a
• a38ea2533e3dfa6339726aafd4bc2bc7e3eec529
• a7a00f35797db2db9302625be456671911896d27
• a99d8313876015fcf1b783d38fee9e9c3cde088c
• ac2b5928f46069111f4334f650a7dbf1b5f026d5
• b26bc0a3e35c474f7099bd2b066f1680f3394b14
• b2b2e5c5a6f8a07f051aab14fbec1f6607888b50
• b47e711845d03c389004c912b3fbfc59228bb18c
• b5e973df0a159ab583fc8923c796c8cbf5b535df
• ba29768a2452a0e3abde02a903e53a181ee05bc8
• bdd2bae83c3bab9ba0c199492fe57e70c6425dd3
• bf265227f9a8e22ea1c0035ac4d2449ceed43e2b
• bf9d3a45273608caf90084c1157de2074322a230
• c02b8c2bc15dd8a7110e5f1765716464bf421591
• c117608dab3ab632de8110f8981dd7e773c61d05
• c3d8a548fa0525e1e55aa592e14303fc6964d28d
• c3fde950fe7d668805b40b1680d519f20c18b899
• c5ef4c31693845d492285e5f1c7ff3c293f99976
• c62e840ffe4bba50f6584b33a877475f0ebcf558
• c6472898e9085e563cd56baeb6b6e21928c5486d
• c7b91ff3cc69dab807016aa76d0c261411ccf27d
• c8fe2296565c211e019cdad3918a5736d4b12d44
• caa1083d2f20be0858e8d3d0671c042d0455a657
• cb7652aede9b1b7d756019f44c25fb0263498313
• ccf83cd713e0f078697f9e842a06d624f8b9757e
• ce9d077349638ffd3e1ad68cda76c12cfb024069
• cebcf2f495c3b95138128d0577dcac5cde29490d
• d12e4f164a4734e8136da85001750157014d012c
• d3254f1f4c4def8c023982dfb28fa31e91b69ab5
• d5cbf554e4e700b37ddcb026d4407fcd87032d87
• d89fc09f1aa72547d4b7f022470b6c8362997a5f
• daa651188610fd9c5a6987109e7ee5504d72a35d
• e0779ac6e5cc76e91fca71efeade2a5d7f099c80
• e2d0edf2e7d4a09fad732d4113d970a56e9a6667
• e76da232ec020d133530fdd52ffcc38b7c1d7662
• e99a03ebe3462d2399f1b819f48384f6714dcba1
• ea0cfe60a7b7168c42c0e86e15feb5b0c9674029
• eb851adfada7b40fc4f6c0ae348694500f878493
• efd41300ccf4143d04664715e1de98cb416ffdd1
• f2ffc4e1d5faec0b7c03a233524bb78e44f0e50b
• f33c980d4b6aaab1dc401226ab452ce840ad4f40
• f38040c70024fe9e305af5a3687e0d5993bb9e96
• f7693e5d39db067d97cd91fb22522f94c59fda3d
• f7d47c38eca7ec68aa478c06b1ba983d9bf02e15
• fb1b1dc288d68f695f88c5ac036b3ab1c4f5e850
• feb9424386af47d550b13614c78530bc06ec876e

9

APPENDIX B

APPENDIX B: IOCS

Filenames

(Note: we believe many of these to be borrowed from
legitimate files)

• agent_wininet_dl.exe
• amdh264enc32.bin
• amdh264enc32.dll
• amdhcp32.dll
• amdhdl32.dll
• amdmftdecoder_32.dll
• amdmftvideodecoder_32.bin
• amdmftvideodecoder_32.dll
• amdmiracast.dll
• amdocl_as32.exe
• amdocl.bin
• amdocl_ld32.exe
• amd_opencl32.dll
• amdpcom32.bin
• atiadlxx.bin
• atiadlxx.dll
• atiapfxx.exe
• atibtmon.exe
• aticalcl.dll
• aticaldd.dll
• aticalrt.dll
• aticfx32.bin
• aticfx32.dll
• atidemgy.bin
• atidxx32.bin
• atidxx32.dll
• atieclxx.exe
• atiesrxx.exe
• atiglpxx.dll
• atiicdxx.dat
• atikmdag.sys
• atimuixx.dll
• atiodcli.exe
• atiode.exe
• atioglxx.bin
• atisamu32.dll
• atiu9pag.bin
• atiuxpag.dll
• ativce02.dat
• ativvaxy_cik.dat
• ativvaxy_cik_nd.dat
• ativvsva.dat
• ativvsvl.dat
• autorun.dll
• autorun_com.dll
• autorun_curver.dll
• clinfo.exe
• coinst_13.152.dll
• observers.dll
• ovdecode.dll
• wininetp.dll

User agent strings
• Java/1.8.0_25
• Java/1.8.0_26
• iTunes/12.0.1 (Windows; N)
• Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0;

rv:11.0) like Gecko
• Mozilla/5.0 (Windows NT 6.1; WOW64; rv:32.0)

Gecko/20100101 Firefox/32.0
• Mozilla/5.0 (Windows NT 6.1; WOW64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome
/34.0.1847.137 Safari/537.36

Mutexes
• Mtx
• qdfrty
• AgentMutex

	Introduction
	The CozyDuke toolset
	Attack overview
	Infection vector
	Target details
	Timeline
	Attribution & links

	Technical Details
	Initial infection
	CozyDuke main dropper
	CozyDuke main component
	Overview
	Persistence
	Configuration data
	Command and control communication
	Tasks
	Modules
	Executables

	CozyDuke Evolution
	CozyDuke Terminology and Naming

	Appendix A | Sample hashes
	Appendix B: IOCs

