Story

VIDEO #DataMining the US election: Is your social media information being used?

Data mining and the US elections. How are political campaigns using your personal online data to win votes? So are they using your Facebook information or are they following your tweets to influence your choice. Watch this video to know more about data mining. 

Data mining (the analysis step of the "Knowledge Discovery in Databases" process, or KDD),[1] a field at the intersection of computer science and statistics,[2][3][4] is the process that attempts to discover patterns in large data sets. It utilizes methods at the intersection of artificial intelligencemachine learningstatistics, and database systems.[2] The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.[2] Aside from the raw analysis step, it involves database and data management aspects, data preprocessingmodel and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating.[2]

The term is a buzzword, and is frequently misused to mean any form of large-scale data or information processing (collection, extractionwarehousinganalysis, and statistics) but is also generalized to any kind of computer decision support system, including artificial intelligencemachine learning, and business intelligence. In the proper use of the word, the key term is discovery, commonly defined as "detecting something new". Even the popular book "Data mining: Practical machine learning tools and techniques with Java"[5] (which covers mostly machine learning material) was originally to be named just "Practical machine learning", and the term "data mining" was only added for marketing reasons.[6] Often the more general terms "(large scale) data analysis", or "analytics" – or when referring to actual methods, artificial intelligence and machine learning – are more appropriate.

The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection) and dependencies (association rule mining). This usually involves using database techniques such as spatial indexes. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting are part of the data mining step, but do belong to the overall KDD process as additional steps.

The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses to test against the larger data populations.